Name: \qquad

1. Determine the number of protons, electrons, and neutrons each of these isotopes possesses: K-40, O-20, and U-234.
protons electrons neutrons

$K-40$	19	19	21
$0-20$	8	8	12
$U-234$	92	92	142

2. Complete the following nuclear reactions:
a. ${ }_{36}^{95} \mathrm{Kr} \rightarrow \underset{{ }_{37}^{95} \mathrm{Rb}}{{ }^{9}+{ }_{-1}^{0} e+\bar{v}}$
b. ${ }_{60}^{144} \mathrm{Nd} \rightarrow{ }_{58}^{140} \mathrm{Ce}+{ }_{2}^{4} \mathrm{He}$
c. ${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+\underset{-1}{0} e$
3. Construct the image on the drawing below via ray tracing.

4. Convert a mass defect of 0.115 g to Joules
a. $E=m c^{2}=0.115 \times 10^{-3} \mathrm{~kg} \cdot\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=1.035 \times 10^{13} \mathrm{~J}=1.04 \times 10^{13} \mathrm{~J}$
b. $1.04 \times 10^{13} \mathrm{~J} \cdot\left(1 \mathrm{eV} / 1.6 \times 10^{-19} \mathrm{~J}\right) \cdot(1 \mathrm{MeV} / 1,000,000 \mathrm{eV})=6.46875 \times 10^{25} \mathrm{MeV}=6.47 \times 10^{25} \mathrm{MeV}$
5. A lithium-6 nucleus has a mass of 6.015121 u . The mass of a single proton is 1.007276 u , and the mass of a single neutron is 1.008665 u . (a) What is the mass defect for lithium and (b) what is the binding energy for lithium?
a. $\Delta m=3 m_{p}+3 m_{n}-m_{L i}=3 \cdot 1.007276 u+3 \cdot 1.008665 u-6.015121 u=0.032702 u$
b. $E=m c^{2}=0.032702 \mathrm{u} \cdot\left(1.66 \times 10^{-27} \mathrm{~kg} / 1 \mathrm{u}\right) \cdot\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=4.89 \times 10^{-12} \mathrm{~J}$
6. The sun radiates energy at the rate of $3.92 \times 10^{26} \mathrm{~W}$. (a) What is the change in the sun's mass in one second? (b) How much mass does the sun lose in the lifetime of your average earthling (say, 75 years)?
a. $m=E / c^{2}=(P \cdot t) / c^{2}=\left(3.92 \times 10^{26} \mathrm{~W} \cdot 1 \mathrm{~s}\right) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=4.36 \times 10^{9} \mathrm{~kg}$
b. $4.36 \times 10^{9} \mathrm{~kg} / \mathrm{s} \cdot(3600 \mathrm{~s} / 1 \mathrm{~h}) \cdot(24 \mathrm{~h} / 1 \mathrm{~d}) \cdot(365.25 \mathrm{~d} / 1 \mathrm{y}) \cdot 75 \mathrm{y}=1.03 \times 10^{19} \mathrm{~kg}$
7. A 2.50 kg object moves along a straight line. The net force that acts on the object varies with its displacement as shown on the graph. The object starts from rest at $\boldsymbol{x}=\mathbf{0}$ and a time of $\boldsymbol{t}=\mathbf{0}$. It is displaced a total distance of $\mathbf{2 0 . 0} \mathbf{~ m}$. Find: (a) The acceleration of the object at $\boldsymbol{x}=5.00 \mathrm{~m}$. (b) The time taken for the object to travel the first ten meters. (c) The amount of work done by the force in displacing the object the 20.0 m . (d) The speed of the object at $\boldsymbol{x}=10.0 \mathbf{m}$. (e) The speed of the object at $x=20.0 \mathrm{~m}$. (f) the change in momentum as the object moves from 10.0 m to $\mathbf{2 0 . 0} \mathbf{~ m}$.

a. $a=F / m=5.00 \mathrm{~N} / 2.50 \mathrm{~kg}=2.00 \mathrm{~m} / \mathrm{s}^{2}$
b. $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& 10 \mathrm{~m}=0 \mathrm{~m}+0 \mathrm{~m} / \mathrm{s} \cdot t+\frac{1}{2}\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot t^{2} \\
& t=\left(10 \mathrm{~s}^{2}\right)^{\frac{1}{2}}=3.16 \mathrm{~s}
\end{aligned}
$$

c. Area under the line: $5 \mathrm{~N} \cdot 10 \mathrm{~m}+2.5 \mathrm{~N} \cdot 10 \mathrm{~m}=75.0 \mathrm{~J}$
d. $v^{2}=v_{0}^{2}+2 a d$
$v=(2 a d)^{\frac{1}{2}}=\left(2 \cdot 2.00 \mathrm{~m} / \mathrm{s}^{2} \cdot 10 \mathrm{~m}\right)^{\frac{1}{2}}=6.32 \mathrm{~m} / \mathrm{s}$
(can also be found by setting $W=K E$ and solving for v. See $7 e$)
e. All of the work is turned into $K E$, so $\triangle K E=W$

$$
W=\frac{1}{2} m v^{2} \text { so } v=(2 \mathrm{~W} / \mathrm{m})^{\frac{1}{2}}=(2.75 \mathrm{~J} / 2.5 \mathrm{~kg})=7.75 \mathrm{~m} / \mathrm{s}
$$

f. $\Delta p=m \Delta v=2.5 \mathrm{~kg} \cdot(7.75 \mathrm{~m} / \mathrm{s}-6.32 \mathrm{~m} / \mathrm{s})=3.575 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=3.58 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

